
DEFEATING SANDBOX EVASION CHAILYTKO & SKURATOVICH

1VIRUS BULLETIN CONFERENCE OCTOBER 2016

DEFEATING SANDBOX EVASION:
HOW TO INCREASE THE

SUCCESSFUL EMULATION RATE
IN YOUR VIRTUAL ENVIRONMENT

Alexander Chailytko & Stanislav Skuratovich
Check Point Software Technologies, Belarus

Email {alexanderc, stanislavsk}@checkpoint.com

ABSTRACT
In the cyberworld, specialized virtual environments are used to
automatically analyse malware behaviour and prevent it from
spreading and damaging real users’ personal data, important
corporate assets, etc. These environments are called sandboxes.
Most modern malware, even those that perpetrate relatively
simple attacks, try to evade sandboxes by using different
sandbox detection techniques. When a piece of malware detects
a sandbox environment, it can adapt its behaviour and perform
only non-malicious actions, thereby giving a false impression
of its nature, and hiding what it actually does once it reaches a
user’s system. This can lead to signifi cant security-related
problems.

In this paper, we focus on the techniques used by malware to
detect virtual environments, and provide detailed technical
descriptions of what can be done to defeat them. To showcase
our theory, we discuss Cuckoo Sandbox, the leading
open-source automatic malware analysis system that is widely
used in the world of security. Cuckoo Sandbox is easy to deploy
and uses a malware analysis system which connects many
features, such as collecting behaviour information, capturing
network traffi c, processing reports and more. Nearly all the
largest players in the market, such as VirusTotal and Malwr, as
well as internal anti-malware-related projects, utilize the
Cuckoo Sandbox product as a backend to perform automatic
behavioural analysis.

Specifi c Cuckoo Sandbox bugs, which allow malware to detect
sandboxed environments, are described in our paper, as well as
possible solutions for these problems.

When a sandbox environment is detected, a piece of malware can
easily hide its malicious intent by masquerading as a legitimate
application, presenting false information to the analysis engine.

As many vendors and companies rely almost blindly on the
results produced in virtual environments (especially ones that use
Cuckoo Sandbox), the false information presented by the
malware can be critical. While other research exists, our work
covers many more different techniques used by malware to
detect virtual environments, as well as ways to defeat them. This
is especially important as the fi eld is constantly evolving. We
also pay special attention to the Cuckoo Sandbox bugs that can
allow malware to detect the virtual environment. Knowing how
to defeat these evasion techniques will help us to achieve a
dramatically increased successful emulation rate in virtual
environments and to deliver vital information to customers.

1. INTRODUCTION
In this paper we present a number of evasion techniques that we
have found during extensive analysis of recent malware. We also
share a software utility that helps to assess virtual environments.
Our solution provides clear detection technique names as well as
proposed fi xes for each one. The information and software will
be made available as open source material on our GitHub
repository [1].

2. CUCKOO ENVIRONMENT DETECTION
TECHNIQUES
Let’s describe implementation fl aws in the Cuckoo Sandbox [2]
product. Each evasion technique is discussed in the context of
both the CuckooMon module [3] and the latest Cuckoo Monitor
module [4].

2.1 Unbalanced stack

To track process behaviour, the CuckooMon/Cuckoo Monitor
module hooks relevant functions. In this type of architecture, the
hook is called before the original function. A hooked function
may use some space on the stack in addition to that used by the
original function. Therefore, the total space on the stack used by
the hooked function may be larger than the space used only by
the original function.

Problem: The malware has information about how much space
the called function uses on the stack. It can therefore move the
stack pointer towards lower addresses at an offset that is
suffi cient to store the function arguments, local variables and
return address to reserve space for them. The malware fi lls the
space below the stack pointer with some relevant data. It then
moves the stack pointer to the original location and calls the
library function. If the function is not hooked, the malware fi lls
in the reserved space before the relevant data (see Figure 1). If
the function is hooked, the malware overlaps relevant data,
because the space that was reserved for the original function’s
local variables is smaller than the space occupied by the hook
and the original function’s local variables combined. The
relevant data is therefore corrupted (see Figure 2). If it stores
pointers to some functions that are used later during the
execution process, the malware jumps to arbitrary code,
occasionally crashing the application.

Figure 1: Stack on non-hooked function.

DEFEATING SANDBOX EVASION CHAILYTKO & SKURATOVICH

2 VIRUS BULLETIN CONFERENCE OCTOBER 2016

Figure 2: Stack on hooked function call.

Solution: To avoid this behaviour, the Cuckoo Monitor/
CuckooMon module can use a two-stage hooking process. In
the fi rst stage, instead of the hook’s code execution, it can move
the stack pointer towards lower addresses of a specifi c size that
will be enough for the malware’s relevant data. Then, the
function’s arguments are copied under the new stack pointer.
Only after these preparatory operations have been completed is
the second stage hook (which performs the real hooking) called.
Relevant data fi lled in by the malware resides on upper stack
addresses, thus it is not affected in any way by the called
function.

2.2 Sleep architecture

There are many problems with the sleep-skipping logic in the
current implementation of Cuckoo Sandbox. It needs to retain
sleeping logic in terms of queries for computer time, tick count,
etc. At the same time it needs to skip non-relevant delays, as the
emulation time is limited. The three main fl aws that make it
possible to evade the sandbox are described below.

2.2.1 Infi nite sleep skipping

Problem: According to the CuckooMon and Cuckoo Monitor
architecture, all delays within the fi rst N seconds are skipped
completely. If the malware uses the sleep family function with
an INFINITE parameter within the fi rst N seconds, the program
may crash. The source code is as follows:

push 0

push 0xFFFFFFFF

call Sleep

retn

Solution: At the beginning of the NtDelayExecution hook,
check if the delay interval has an INFINITE value. If it is equal
to INFINITE, call the original NtDelayExecution code.

2.2.2 Sleep skipping within a specifi c bound

Problem: According to the CuckooMon and Cuckoo Monitor
architecture, all delays within the fi rst N seconds are skipped
completely. At the beginning of the execution process, the
malware may perform time-consuming operations, after which

the malware may sleep for a long period, causing long delays,
and thus exceeding the limited emulation time of the sandbox.

Solution: Skip delays that are greater than a specifi c limit. For
smaller delays, use approximation and accumulate delayed
values. If the number of accumulated values from the same
range has exceeded a specifi c boundary, further delays from that
range are skipped.

2.2.3 Skipped time accumulation

Problem: According to the CuckooMon and Cuckoo Monitor
architecture, all delays that are skipped are accumulated in a
global variable. This variable is used while performing
GetTickCount, GetSystemTime, etc. calls. The value of the
variable is added to the real system time in order to avoid
detection by skipped delays. This model is non-thread safe, and
therefore the malware may spoof its output in the following
way: it creates a thread that sleeps for a specifi c long period of
time, so it will accumulate in the global variable. In another
thread, the malware calls GetSystemTime, which is used, for
example, in DGA [5]. As the current system time plus a long
delay may exceed today’s date, the generated domains will be
non-relevant for today.

Solution: To avoid this behaviour, delay accumulation should
be implemented on a per-thread basis. Delays in different
threads will not affect each other’s time-dependent behaviour.

2.3 Detection by agent

To communicate with the machine, Cuckoo uses an agent server
on the sandbox side. As the communication protocol is well
known, the malware may use it to evade the virtual environment.

Problem: As an agent listens on some port (the default is 8000),
the malware can enumerate all LISTENING ports. During
enumeration, the malware may send specially crafted data and
check the response. If the response matches a specifi c pattern,
the malware can assume that the machine is running an agent.

Solution: While accepting incoming connections, the agent can
perform a check of whether the incoming IP address belongs to
one of the local machine interface addresses. If it belongs, the
agent simply closes the connection.

2.4 Detection by function hooks

To track process behaviour, CuckooMon and Cuckoo Monitor
use function hooking. Both use trampolines [6] inside functions.
Compared to CuckooMon, the new Cuckoo Monitor module has
improved hooking, at least in terms of logic. The current version
registers a notifi cation function for the DLL fi rst load by calling
the LdrRegisterDllNotifi cation function (in Windows Vista or
later). Therefore, functions that should be traced and are not
present in any modules at the Monitor startup are hooked after
the fi rst load of the module.

Problem: As hooks are implemented as trampolines, the
CuckooMon/Cuckoo Monitor adds jumps at the beginning of
functions. The malware can easily check if the fi rst byte is equal
to 0xE9 for some ntdll functions such as ZwClose,
ZwDelayExecution, ZwGetContextThread, etc. At the same

DEFEATING SANDBOX EVASION CHAILYTKO & SKURATOVICH

3VIRUS BULLETIN CONFERENCE OCTOBER 2016

time, a check of whether the fi rst byte is equal to 0xE9 can
easily be performed for some kernel32 functions, CreateThread,
DeleteFileW, etc. If the value of the fi rst byte matches, the
malware can assume that functions are hooked and it is running
inside a sandboxed environment.

Solution: To avoid detection by hooks, a few possible solutions
exist. One of these is to abandon user-mode hooks in the way in
which they are currently implemented and to use a driver
instead. A second solution is to use stack routing to implement
function hooking.

2.5 Monitor artifacts

CuckooMon and Cuckoo Monitor use a confi guration fi le to
perform initialization steps, as well as some system objects to
communicate with the master. Evasion techniques based on
such behaviour are described below.

2.5.1 Monitor confi guration fi le

Problem: Confi guration fi les for the CuckooMon and Cuckoo
Monitor are stored in the following paths (PID =
GetCurrentProcessId):

• "%TEMP%\%d.ini" % PID

• "C:\cuckoo_%lu.ini" % PID

The malware may check for the presence of such fi les in the
fi lesystem. If the fi le is present, the malware can assume that it
is running inside Cuckoo Sandbox.

Solution: If CuckooMon/Cuckoo Monitor is used in an internal
project, the confi guration fi le can be placed inside a shared
object. The shared object name can be generated using the
current date and process ID. Otherwise, the injector can use
CreateRemoteThread/QueueUserAPC at the entry point of the
manually mapped CuckooMon/Cuckoo Monitor module,
previously writing confi guration to allocated memory. The
injector can pass the address of the written confi guration as a
parameter to this function.

2.5.2 Event name

Problem: The deprecated CuckooMon version uses the
‘CuckooEvent%d’ % PID event to notify the master that the
module has successfully been injected into the tracking process.
Malware can try to open the event by using the OpenEvent
function with the specifi ed event name. If the event is
successfully opened, the malware can assume that it is running
inside Cuckoo Sandbox.

Solution: If CuckooMon is used in an internal project, then the
event name generation algorithm can use, for example, the
current date and injected process ID. On the other hand, the new
Cuckoo Monitor implementation uses a specifi c command sent
over the pipe, which seems to be a very good solution as well.

2.5.3 Communication pipe name

If detection by confi guration fi lename is a defi ciency, then the
malware may parse its content and look for the communication
pipe name.

Problem: If the pipe name is known, the malware can send any
commands to the pipe server as the protocol is well known. At
the same time, the existence of such a pipe indicates that
execution is taking place in a sandboxed environment.

Solution: As the pipe name can be obtained from the analyser
confi guration fi le and the Cuckoo Monitor confi guration fi le,
refer to the proposed solutions for these problems.

2.6 Agent artifacts

To start emulation of a specifi ed fi le, the agent fi rst copies all
startup, fi x and disguise scripts and DLL to a specifi c path in the
system. The path contains SYSTEMDRIVE and a randomized
folder whose name is between fi ve and 10 characters in length.

Problem: The malware can enumerate SYSTEMDRIVE and
check if the folders contain the following fi les or folders:

• analyzer.py

• analysis.conf

• bin/

• dll/

• lib/

• modules/

If these are present, the malware can assume that it is running
inside a sandboxed environment.

Solution: To avoid detection by the presence of such fi les, the
following solution can be implemented: use py2exe to compile
all Python scripts with embedded CuckooMon/Cuckoo Monitor
DLL content. That executable fi le is stored somewhere in the
system under a random name.

3. VIRTUAL ENVIRONMENT DETECTION
TECHNIQUES
Let’s discuss some specifi c virtual environment detection
techniques.

3.1 Detection based on raw fi rmware table

Problem: The malware tries to dump a raw fi rmware table,
using an undocumented structure, to get information about the
present fi rmware [7].

The SYSTEM_FIRMWARE_TABLE_INFORMATION (SFTI)
object is initialized as follows:

 sfti->Action = SystemFirmwareTable_Get;
sfti-> ProviderSignature = 'FIRM';
sfti-> TableID = 0xC0000;

sfti->TableBuff erLength = Length;

The initialized SFTI object is used in the following way as an
argument for the system information call to dump the raw
fi rmware table:

 NtQuerySystemInformation(
 SystemFirmwareTableInformation,
 sfti,
 Length,
 &Length);

DEFEATING SANDBOX EVASION CHAILYTKO & SKURATOVICH

4 VIRUS BULLETIN CONFERENCE OCTOBER 2016

 If the operating system version is Windows XP or older, the
malware uses CSRSS memory space to dump the raw fi rmware
table:

NtReadVirtualMemory(
 hCSRSS,
 0xC0000,
 sfti,
 RegionSize,

 &memIO);

The malware scans the received fi rmware table for the presence
of the following strings:

• VirtualBox

• Oracle

• innotek

• VMware

• VMware, Inc.

• S3 Corp.

• Parallels(R)

Solution: In the case of Windows XP we use splicing of the
NtReadVirtualMemory service. First, we need to parse the
arguments. If the address of the read memory is equal to
0xC0000, then we modify the returned buffer, simply removing
the specifi ed strings from it.

In the case of Windows Vista and later versions, we hook the
kernel mode service NtQuerySystemInformation. If the
SystemInformationClass is equal to
SystemFirmwareTableInformation, we start to parse the passed
SFTI structure. If the SFTI member values are the same as
described above, then we execute the original service and
modify the returned SFTI structure, simply removing the
specifi ed strings from it.

 3.2 Detection based on raw SMBIOS fi rmware
table

Problem: This technique is quite similar to the previous one,
except the malware tries to read the SMBIOS fi rmware table
[7], and passes a different structure to the function calls:

sfti->Action = SystemFirmwareTable_Get;
sfti->ProviderSignature = 'RSMB';
sfti->TableID = 0x0;

sfti->TableBuff erLength = Length;

If the operating system version is Windows XP or older, the
malware uses CSRSS memory space to dump the raw SMBIOS
fi rmware table:

NtReadVirtualMemory(
 hCSRSS,
 0xE0000,
 sfti,
 RegionSize,

 &memIO);

Solution: The malware scans the received SMBIOS table for
the presence of the same strings as described above. Possible
solutions are also the same, except that the driver should check
for a different address in the case of Windows XP (0xE0000),

and a different ProviderSignature (‘RSMB’) as well as TableID
(0x0) in the case of Windows Vista and later.

 3.3 Detection based on inaccessibility of global
web services

Problem: As almost all sandboxes disallow traffi c outside the
internal network, a problem may arise whereby the malware can
access global web services in order to obtain some information
that is hard to emulate in a virtual environment, for example:

• IP-resolving services like ip-addr.es, ip-address.ru, etc. to
get the external IP.

• The speedtest.net service to get the actual network
bandwidth. If it’s below or above a specifi ed limit, the
malware will stop the execution.

 Solution: To bypass such checks we need to adjust the routing
inside our network to route such requests to our ‘fake’ services
that replicate the real ones.

 3.4 Detection based on DNS traffi c

Problem: Some advanced malware overrides the system’s
default DNS servers, using public ones such as 8.8.8.8 or
8.8.4.4. So, even if a fake DNS server is set up in the sandbox,
but not all the traffi c is routed to it, the malware will not get a
response and will stop its execution. Another possible problem
is that the malware checks the number of records returned by
the DNS server for the most popular websites, such as
google.com, yahoo.com, microsoft.com, etc. If your fake DNS
server returns only one instead of multiple records, the malware
will also stop its execution.

Solution: Fully emulate the real services and protocols. Return
multiple DNS records if they should be present, as well as
routing all DNS traffi c to the server controlled by you.

3.5 Detection based on date/time tampering

Problem: Malware can obtain a valid date/time from the HTTP
headers during access to a legitimate website. For example, the
following are the HTTP headers while accessing google.com:

HTTP/1.1 302 Found
Cache-Control: private
Content-Type: text/html; charset=UTF-8
Location: http://www.google.by/?gfe_
rd=cr&ei=Zn09V4uIDemH8Qfv3ZP4Dw
Content-Length: 258

Date: Thu, 19 May 2016 08:46:30 GMT

The malware could utilize the valid date/time in order to detect
tampering with the date/time values in a virtual environment.

For example, let’s look at the detection of sleep-skipping
methods. Malware checks if there is a discrepancy between the
sleep time and the time that has really passed. In the case of
using sleep-skipping techniques, this will result in detection.
The following is a section of pseudocode:

bool isSandboxed()
{
 static const int kDelta = 5 * 1000;
 static const int64_t k100NstoMSecs=10000;

DEFEATING SANDBOX EVASION CHAILYTKO & SKURATOVICH

5VIRUS BULLETIN CONFERENCE OCTOBER 2016

 bool sandboxDetected = false;

 FILETIME ftLocalStart, ftLocalEnd;
 FILETIME ftLocalResult;
 FILETIME ftWebStart, ftWebEnd;

 GetSystemTimeAsFileTime(&ftLocalStart);
 getWebTime(ftWebStart);

 const int64_t sleepMSec = 60 * 1000;
 SleepEx(sleepMSec, FALSE);

 GetSystemTimeAsFileTime(&ftLocalEnd);
 getWebTime(ftWebEnd);

 // PC’s clock validation

 ftLocalResult = ftLocalEnd – ftLocalStart;
 ftWebResult = ftWebEnd – ftWebStart;

 const int64_t localDiff =
 abs(ftLocalResult) / k100NStoMSecs;
 const int64_t webDiff =
 abs(ftWebResult) / k100NStoMSecs;

 if (abs(localDiff - webDiff) > kDelta)
 sandboxDetected = true;

 // second check for proper sleep delay
 if (!sandboxDetected)
 {
 if (localDiff < sleepMSec)
 sandboxDetected = true;

 if (webDiff < sleepMSec)
 sandboxDetected = true;
 }

 return sandboxDetected;

}

Solution: Fully emulate the real services and protocols. In such
a case you should return the same date/time in the HTTP
headers from the fake HTTP server as on the local machine.

4. SUMMARY
Many malware families use various techniques to detect virtual
environments. Some of these are trivial and the specifi c
‘loopholes’ they exploit are easily fi xed. However, other
techniques are more advanced and require extra effort.
Depending on the detection technique, the malware may behave
completely differently in a virtual environment from how it
would in a real system.

Some of the described techniques are well known, but not yet
fi xed in a large number of virtual environments. Some
techniques may have been used recently by specifi c malware
(e.g. Locky, Qbot, Ramdo, Cridex, Matsnu, etc.), especially
against Cuckoo Sandbox.

The worst problem is that some malware families don’t just
evade the emulation process, but also generate fake information
(as seen, for example, in Locky and Ramdo).

There is still a lot of room for improvement in sandboxes, even
if the emulation rate is suffi cient. We hope that our research will
serve as impetus for improvement in the Cuckoo Sandbox
product and other virtual environments. At the same time, we
expect that it will lead to better internal malware-related
projects.

FUTURE WORKS
Evasion techniques and the detections they use represent an
ever-evolving world. It’s a classic cat-and-mouse game between
malware developers and security researchers. Our future work
will include tracking and fi xing newly discovered evasion
techniques to keep the emulation rate high enough for practical
needs.

ACKNOWLEDGEMENT
We would like to thank our colleague Aliaksandr Trafi mchuk for
helping us with our project.

REFERENCES
[1] https://github.com/MalwareResearch/VB2016.

[2] https://github.com/cuckoosandbox.

[3] https://github.com/cuckoosandbox/cuckoomon.

[4] https://github.com/cuckoosandbox/monitor.

[5] https://en.wikipedia.org/wiki/Domain_generation_
algorithm.

[6] https://en.wikipedia.org/wiki/Trampoline_(computing).

[7] https://github.com/hfi ref0x/VMDE/blob/master/Output/
vmde.pdf.

https://en.wikipedia.org/wiki/Domain_generation_algorithm
https://github.com/hfiref0x/VMDE/blob/master/Output/vmde.pdf
https://en.wikipedia.org/wiki/Trampoline_(computing)

