
WILD ANDROID COLLUSIONS BLASCO ET AL.

1VIRUS BULLETIN CONFERENCE OCTOBER 2016

WILD ANDROID COLLUSIONS
Dr Jorge Blasco & Prof. Thomas M. Chen

City University London, UK

Prof. Igor Muttik
Intel Security, UK

Prof. Markus Roggenbach
Swansea University, UK

Email {jorge.blasco.1, tom.chen.1}@city.ac.uk
igor@muttik.net; m.roggenbach@swansea.ac.uk

ABSTRACT
Mobile operating systems support multiple communication
methods between apps. Unfortunately, these handy inter-app
communication mechanisms also make it possible to carry out
harmful actions in a collaborative fashion. Two or more mobile
apps, viewed independently, may not appear to be malicious.
Together, however, they could become harmful by exchanging
information with one another. Multi-app threats such as these
were considered theoretical for some years. Yet as part of our
efforts to develop methods to detect collusions, we have found
colluding code embedded in multiple applications in the wild. In
this paper, we provide a concise defi nition of mobile app
collusion, explain how mobile app collusion can happen in the
wild, and describe countermeasures to protect devices from
such attacks.

INTRODUCTION
Modern mobile operating systems incorporate many techniques to
isolate apps in sandboxes, restrict their capabilities, and clearly
control which permissions they have at a fairly granular level.
However, operating systems also include fully documented ways
for apps to communicate with each other across sandbox
boundaries. In Android, for example, this is often done via intents,
which are essentially inter-process (or inter-app) messages.

Looking to evade detection by mobile security tools and by
malware and privacy fi lters employed in app markets, attackers
may try to leverage multiple apps with different capabilities and
permissions to achieve their goals – for example, using an app
with permitted access to sensitive data to communicate with
another app that has Internet access. This collusion technique is
diffi cult to detect, as each app will appear to most tools to be
benign, potentially enabling attackers to penetrate more devices
and for a longer time before they are caught.

This kind of attack is possible because sandboxed systems, such
as Android, are designed to avoid threats created by single apps.
This approach to security is also followed by other malware
protection systems, which generally analyse applications as
isolated entities. Although this behaviour is not widespread
today, it opens an avenue to circumvent sandboxed operating
systems, and Android is its best example.

In this paper we present a concise defi nition of app collusion,
including the threats that can be created by these apps and the

communication channels they may use to collude. We describe
how colluding apps have operated for a long time, without
being detected, in a large group of applications that use a
malicious version of the library MoPlus SDK. Finally, we
discuss the main countermeasures that can be put in place to
prevent such attacks.

APPLICATION COLLUSION

The origins of application collusion can be traced to the
‘confused deputy’ attack, as described by Hardy in 1988 [1].
Confused deputies expose protected resources through public
interfaces. In Android, confused deputy attacks can happen in the
form of ‘permission redelegation attacks’ [2–4]. A careless
developer may unintentionally expose permission-protected
resources when allowing the components that access those
resources to communicate with other applications through IPC.
This is benefi cial for the attacker because the malicious
application does not declare the usage of the protected resources,
but ends up using them.

The fi rst documented example of collusion is Soundcomber [5].
This proof-of-concept malware is composed of two apps. The
fi rst app requires access only to the device microphone
(RECORD_AUDIO permission), listens for calls to telephone
banking services and extracts the digits pressed by the user. The
second app receives the extracted sensitive information and
sends it to a remote server (INTERNET permission).

Defi nition

In this work, ‘collusion’ refers to the ability of a set of apps to
carry out an attack in a collaborative fashion. Our defi nition is
not restricted only to information theft attacks, as in the
Soundcomber example and other works [6, 7]. In fact, the
colluding behaviour identifi ed in the wild does not follow this
pattern. The Soundcomber example shows the difference
between app collusion and confused deputy attacks. In
application collusion, the exposure of the sensitive resource is
intentional. Confused deputies (through permission redelegation)
occur only when a programmer accidentally creates a vulnerable
app. Unfortunately, distinguishing between the two attacks is a
challenging task because they generate the same traces on the
user’s device.

Threats created by colluding apps

Colluding apps can carry out any attack such as the ones carried
out by single apps [8]. However, collusion can also be used to
synchronize the execution of multiple apps. The following list
enumerates attacks that can be performed by colluding apps:

• Money theft: This threat arises when a malicious app tries
to obtain a fi nancial benefi t from the user. This may include
performing actions without explicit consent or notifi cation,
or direct extortion attempts. The main sources of direct
fi nancial profi t used in Android malware are premium-rate
SMS subscription services and, more recently, ransomware.
In some cases, apps may obtain consent by using social
engineering techniques (e.g. Android/FakeInstaller) or
directly ask the user for money (e.g. Android/Simplelocker).

WILD ANDROID COLLUSIONS BLASCO ET AL.

2 VIRUS BULLETIN CONFERENCE OCTOBER 2016

In other cases they may use exploits to escalate privileges
and bypass the Android permission system. There are
several ways of implementing this attack using colluding
applications. A ransomware colluding set could be
comprised of one app that encrypts the user fi les and
another app (that requires some kind of payment) to
decrypt them. Also, an app with the ability to send SMS
messages could provide an interface to another app (which
has no SMS permission) for sending SMS messages to
premium-rate numbers.

• Information theft: Sensitive information (photos, contact
lists, chat conversations, online credentials, personal data,
etc.) stored in smartphones makes them a very attractive
target for attackers. Malicious or privacy-intruding apps
may access and export that information without user
consent. In the case of colluding apps, this can be achieved
by one app that accesses sensitive information and another
app that sends the information to a remote server.

• Denial of service: Being aware of the value that
information has for device owners, attackers also blackmail
them by encrypting their information and asking for
ransom money (e.g. Android/Simplelocker). Malware
samples that focus on denial-of-service attacks (sabotaging
services rather than information) also fall under this
category.

• Service misuse: When malicious software uses the device’s
resources to perform operations without notifi cation or user
consent. For example, sending spam takes advantage of the
user messaging services (mail, IM, SMS, etc.). Using the
device as a proxy for future attacks is also a kind of service
misuse. Most of the attacks against smartphones require
some kind of service misuse. This includes the rest of
threats described in this list which often include service
misuse or elevation of privilege.

• Payload execution synchronization: Malicious apps can
also coordinate and synchronize their attacks. When
installed on the same device, they may coordinate their
actions so their impact is much higher than when acting on
their own.

Communication channels for app collusion
Colluding applications can use standard communication
channels such as intents to execute their attacks. However, an
attacker may also use stealthier communication options to avoid
detection. The following presents a list of communication
possibilities in Android that can be misused by colluding
applications:

Intents
An intent is a messaging object that is used to request actions
from other apps’ components. These can belong to the same or
different apps. Intents can be explicit or implicit. Explicit intents
target specifi c activities or services (for example, an activity
invoking a specifi c activity or service from the same app) while
implicit intents target generic actions that can be performed by
many recipients (for example, sending a message, opening a
web link, etc.). Activities, services, and broadcast receivers

defi ne the intents that they can handle by declaring a set of
intent fi lters. For activities and services, intent fi lters must be
declared in the app’s manifest XML fi le. Broadcast receivers
can also register their intent fi lters programmatically during
execution.

Although later versions of Android implement SELinux, intents
are not covered by the mandatory access controls imposed by
SELinux, as their semantics are not compatible [9]. Intents can
be used by colluding apps to share information just as any other
benign application does. Broadcast receivers and services allow
applications to exchange data without user intervention.

Content providers

A content provider offers to other apps a method to access
structured data from the app to which the content provider
belongs. Content providers store information in one or more
tables, in a similar way to relational databases. Apps access data
of content providers using content resolver objects. A content
provider offers methods that can be called by others apps, not
only to read data but also to update, create and delete
information encapsulated in the content provider object.

Malicious applications can use already available content
providers as a drop box in order to exchange information.
Access to the system content providers sometimes requires
applications to request corresponding permissions (such as
WRITE_CONTACTS to access the contact database).

External storage
Android allows applications to access a partition of storage that
is shared by all applications. Generally, external storage is
available through a USB connection, SD card, or even a
partition inside the main fl ash drive of the device. Apps
accessing the external storage need to declare the READ_
EXTERNAL_STORAGE permission. Apps declaring the
WRITE_EXTERNAL_STORAGE can write to and read from
external storage. Applications with access to external storage
can access all fi les inside it, as no access restriction is applied.
Files in the external storage can be accessed using the common
fi le access API. The external storage of an Android device could
also be used by colluding applications as a shared drop box to
exchange information.

Shared preferences
Shared preferences are an Android feature that allows apps to
store key-value pairs of data. The purpose of shared preferences
is to store app confi guration and preferences. Although it is not
intended for inter-app communication, apps can use key-value
pairs to exchange information if proper permissions are defi ned
(prior to Android 4.4). To do so, applications need to use the
fl ags WORLD_WRITABLE or WORLD_READABLE. Since
the adoption of SELinux (from Android 4.4) an app cannot
access the world readable fi les of other applications, as both
apps are confi ned to different SELinux domains.

Unix sockets
Colluding apps can also use standard Unix sockets to
communicate. Apps can use sockets opened to the localhost to

WILD ANDROID COLLUSIONS BLASCO ET AL.

3VIRUS BULLETIN CONFERENCE OCTOBER 2016

communicate as if they were communicating via a network.
Communication between two apps that is mediated by an
external server is not generally considered as collusion, as the
communication happens outside the device.

Covert channels
Covert channels in Android can take advantage of some of the
APIs or features offered by the operating system to enable
communication between processes [10, 11]. In Android, this
includes the use of public readable and writable settings (such
as volume level) and the capture of broadcast intents generated
by the system in certain events that can be triggered by apps (for
example, wake lock). Processes can also take advantage of
covert channels that are general to most computing systems
such as fi le locks, process enumeration, socket discovery, free
storage space, available memory, and CPU usage.

THE MOPLUS SDK
One of our fi rst tasks in trying to identify collusion attempts in
the wild has been to analyse not-so-standard communication
channels in Android [12]. Specifi cally, we investigated how
shared preferences were used for communication in a set of more
than 50,000 apps. These apps were collected and categorized by
Intel Security into three groups: malware, potentially unwanted
programs (PUPs), and clean (see Table 1).

In our analysis, we found that some of the apps in the PUP set
were capable of reading fi les that originated from different app
packages. A manual review of these apps revealed that they
were exchanging data through shared preferences fi les to

synchronize the execution of a potentially harmful payload. This
payload was included inside a library embedded in these
applications. This library, known as MoPlus SDK, has been
known to contain remote-control capability (essentially a
backdoor) since November 2015 [13]. However, the collusion
behaviour of this SDK had not previously been discovered. We
were able to identify 5,056 APKs belonging to 20 apps. The
actual number of affected apps in the wild is likely to be higher
than the list in Table 2.

In the rest of this section we briefl y describe the malicious
behaviour of this SDK and provide a more detailed analysis of
its colluding behaviour.

Malicious behaviour

The MoPlus SDK (versions up to Q4 2015) can open a local
HTTP server on the user device. This enables the attacker to
perform a series of malicious operations, including:

• Sending arbitrary intents received via the control server.

• Obtaining sensitive information from the user’s device,
including the user location and the IMEI (International
Mobile Station Equipment Identity).

• Installing applications silently in rooted devices.

• Adding contacts received from the control server.

The malicious payload embedded inside the MoPlus SDK
inherits all permissions requested by the application. As these
are chosen by the app developer, it is possible that an app
including the SDK will not have the necessary permissions to
execute all of the malicious payload. The colluding behaviour of
the MoPlus SDK aims to execute the malicious payload in the
process with the maximum amount of privileges.

Colluding behaviour

Application collusion research has focused mainly on trying to
detect fl ows of sensitive information across applications.
However, the colluding behaviour exhibited by the MoPlus SDK
differs from this kind of collusion. In a nutshell, all apps
running on a device that include the MoPlus SDK will talk to
each other to determine which of these apps has the most
privileges. The app with the most privileges will be the only one
executing a local HTTP server to receive commands from the
control server. In distributed computing this kind of behaviour is
known as leader election. In the next sections we describe this
behaviour in detail with reverse-engineered code samples. These
have been obtained from the Baidu search box app (SHA256:
36bd6418afeaba44eab45793ff8a70ad016708053c6a9c1ff056e6
bdd05072d1). Locations of shown payloads may differ from one
application package to another, as Android app code is generally
obfuscated using ProGuard.

Collusion functionality description

The analysed version of the MoPlus SDK includes the
MoPlusService and the MoPlusReceiver app components. In all
analysed apps, the MoPlusService is confi gured as exported in the
manifest. In Android this is considered to be a high-risk practice,
as all other apps will be able to call and access the service.

Malware PUPs Clean

Number of apps 13,805 13,991 22,378

Overall installs 3,696,720 7,656,755 21,205,724,533

Average size in
KB

3,007.9 7,394.52 10,208.3

 Table 1: Summary of analysed apps (from 14 February 2012 to
6 February 2016).

Package Name

com.baidu.BaiduMap com.baidu.appsearch

com.baidu.browser.apps com.baidu.hao123

com.baidu.netdisk com.baidu.searchbox

com.baidu.video com.dragon.android.pandaspace

com.hiapk.marketpho com.ifeng.newvideo

com.managershare com.mfw.roadbook

com.nd.android.pandahome2 com.qiyi.video

com.quanleimu.activity com.tuniu.app.ui

com.yuedong.sport tv.pps.mobile

com.android.comicsisland.activity com.dongqiudi.news

 Table 2: Selection of package names known to include the
affected version of the MoPlus SDK.

WILD ANDROID COLLUSIONS BLASCO ET AL.

4 VIRUS BULLETIN CONFERENCE OCTOBER 2016

Establishing the app priority
During the MoPlus SDK initialization, the MoPlusService is
created inside each of the apps with the MoPlus SDK. During
service creation (see Code 1), the MoPlus SDK executes three
checks on the package of the application in which it runs:

• The version of the MoPlus SDK is checked against a value
stored in a preference fi le. This check does not necessarily
change the behaviour of the program (lines 2 to 8).

• The SDK looks for the metadata tag DisableService inside
the AndroidManifest (!a(paramContext)). If it is found, it
will cease to execute.

• The SDK checks if the app executing the SDK has all the
necessary components of the SDK and that the minimum
required permissions the SDK requires have been granted
(j(paramContext)). The minimum permissions required to
continue execution are:

- android.permission.INTERNET

- android.permission.READ_PHONE_STATE

- android.permission.ACCESS_NETWORK_STATE

- android.permission.BROADCAST_STICKY

- android.permission.WRITE_SETTINGS

- android.permission.WRITE_EXTERNAL_STORAGE

- android.permission.SET_ACTIVITY_WATCHER

- android.permission.GET_TASKS

If any of these three checks fails, the service instance assigns
itself a priority of 0 inside a preference fi le that can be read by
the rest of the applications installed in the system. The name of
the preference fi le is created by concatenating the package name
to ‘push_sync’. The SDK uses the WORLD_READABLE fl ag
(value 1) to save the fi le so other apps can access it.

If the three checks hold, the service assigns itself a priority that
depends on several factors (see Code 2). These include, from
lowest to highest priority:

• Checks of several metadata values from the app manifest
(second to fourth ‘if’ statements in Code 2), including:

- DisableLocalServer

- DisableStatistic

- DisableApplist

- isBaiduApp

• Check if the app can write to the contact lists
(p(paramContext)).

• Check if the app is part of the system image
(b(paramContext, paramContext.getPackageName())).

• An additional priority value included in the manifest fi le
(return line).

The obtained priority value is saved in the previously referenced
preference fi le ‘.push_sync’. This behaviour is executed by all
apps, including the MoPlus SDK. In this way, each app holds a

public static void e(Context paramContext, boolean paramBoolean){

 SharedPreferences localSharedPreferences = paramContext.getSharedPreferences("pst", 0);

 int i = c(paramContext, paramContext.getPackageName());

 int j = localSharedPreferences.getInt("pr_v", 0);

 SharedPreferences.Editor localEditor1;

 if ((j < i) || (paramBoolean))

 {

 Log.d("Utility", "oldVCode=" + j + "vcode=" + i + "isForce" + paramBoolean);

 localEditor1 = paramContext.getSharedPreferences(paramContext.getPackageName() + ".push_sync", 1).edit();

 if ((!a(paramContext)) && (j(paramContext)))

 break label197;

 localEditor1.putLong("priority", 0L);

 }

 while (true)

 {

 localEditor1.putInt("version", 121);

 localEditor1.commit();

 SharedPreferences.Editor localEditor2 = localSharedPreferences.edit();

 localEditor2.putInt("pr_v", i);

 localEditor2.commit();

 return;

 label197: localEditor1.putLong("priority", f(paramContext));

 }

}

 Code 1: This method checks for execution conditions. This code is included in the class com.baidu.android.moplus.util.a.

WILD ANDROID COLLUSIONS BLASCO ET AL.

5VIRUS BULLETIN CONFERENCE OCTOBER 2016

shared preference fi le refl ecting the access level (priority) that
the app has to required resources (see Figure 1).

Executing the highest priority receiver

After the priority has been obtained and stored, the OnCreate
method of the service calls method ‘a’ (see Code 3) to create
and broadcast a new intent object.

The localIntent object is obtained from the execution of the
method c(Context) (see Code 4), which creates the intent that
will start MoPlusReceiver.

The call to ‘d’ in Code 3 tells the intent to be sent only to the
package with the highest stored priority value. This is executed
through the method a(Context), which simply forwards the call to
another method, a(Context,’push_sync’, ‘priority’) (see Code 5).

F igure 1: Each app saves a priority value that depends on the amount of access it has to the system resources. Priority values have
been calculated to illustrate this explanation.

public static long f(Context paramContext){

 long l1 = 0L;

 if (paramContext == null)

 return l1;

 if (!g(paramContext, paramContext.getPackageName()))

 l1 += 1L;

 long l2 = l1 << 1;

 if (!i(paramContext))

 l2 += 1L;

 long l3 = l2 << 1;

 if (!f(paramContext, paramContext.getPackageName()))

 l3 += 1L;

 long l4 = l3 << 1;

 if (d(paramContext, paramContext.getPackageName()))

 l4 += 1L;

 long l5 = l4 << 1;

 if (p(paramContext))

 l5 += 1L;

 long l6 = l5 << 1;

 if (b(paramContext, paramContext.getPackageName()))

 l6 += 1L;

 return 0x79000000000000 | (l6 | 0xFF & i(paramContext, “moplus_addon_priority”) << 40);

}

Code 2: The MoPlus SDK uses this method to assign priority execution to each app’s MoPlusService. This code is included in the class
com.baidu.android.moplus.util.a.

WILD ANDROID COLLUSIONS BLASCO ET AL.

6 VIRUS BULLETIN CONFERENCE OCTOBER 2016

Finally, the method a(Context, String, String) looks for all the
packages that can answer the intent actions included in the
MoPlus SDK (see Code 6). These are:

• com.baidu.android.moplus.action.START

• com.baidu.android.pushservice.action.BIND_SYNC

For each of the packages found, the app inspects the contents of
the .push_sync fi le to retrieve its priority, selecting the package
name of the fi le with the highest priority. After the package
name has been selected, the intent is sent to the system through
the method a(Context, Intent, long) (see Code 7), which cancels
previous intents that have been registered (to avoid launching
the service more than once) and, after a delay, sends the intent
passed as a parameter.

 All apps that include the MoPlus SDK library exhibit this
behaviour (see Figure 2).

COUNTERMEASURES
Security vendors offer Android products that protect
smartphones and tablets by scanning individual installation
packages (APKs) and blocking unwanted ones. Colluding apps
can be blocked using the same technique, but the catch is to
have tools that recognize that they are colluding. The goal of our
collaborative project (www.acidproject.org.uk) is to develop
practical tools for collusion discovery.

Developers of apps may improve their software and protect their
own reputations by avoiding unknown third parties and ad

F igure 2: Representation of the com.myapp while it executes the highest priority receiver.

public static void a(Context paramContext, long paramLong){

 Context localContext = paramContext.getApplicationContext();

 Intent localIntent = c(localContext);

 localIntent.setPackage(d(localContext));

 a(localContext, localIntent, paramLong);

}

Code 3: Creating the intent object. The inner a() method is used to broadcast it.

public static Intent c(Context paramContext){

 Intent localIntent = new Intent(“com.baidu.android.moplus.action.START”);

 localIntent.addFlags(32);

 localIntent.putExtra(“method_version”, “V1”);

 return localIntent;

}

Code 4: Intent creation method.

public static String d(Context paramContext){

 return a(paramContext, “.push_sync”, “priority”);

}

Code 5: This method forwards the call to return the app package with the highest priority.

WILD ANDROID COLLUSIONS BLASCO ET AL.

7VIRUS BULLETIN CONFERENCE OCTOBER 2016

libraries, especially when they are closed source. It is also a
good idea to avoid using multiple SDKs and ad libraries in an
app. This last measure reduces the risk of collusion and also
reduces mobile data usage for users.

App market vendors would benefi t from employing anti-
collusion fi lters to block the publication of such apps. It is also a
good idea to set and enforce a sensible policy on inter-app
communications and explicitly prohibit developers to violate
operating system limitations through collusion methods.

Collusions are part of a bigger and more general problem of
effective software isolation [14]. The same problem exists in all
environments that implement software sandboxing, from other
mobile operating systems to virtual machines in server farms.
The tendency to have more and better isolation is positive and
we should expect attackers to employ collusion methods more
often to circumvent this security trend. Covert communications
across sandboxes will likely be one of the attack vectors of
tomorrow.

ACKNOWLEDGEMENTS
This work has been supported by the UK Engineering and
Physical Sciences Research Council (EPSRC), under the
BACHUS call (EP/L022699/1). A special thanks goes to Erwin
R. Catesbeiana Jr. for excellent guidance through the Android
ecosystem.

BIBLIOGRAPHY
[1] Hardy, N. The Confused Deputy: (or why capabilities

might have been invented). 1988. ACM SIGOPS
Operating Systems Review, 22(4), pp.36–38.

[2] Felt, A. P.; Wang, H. J.; Moshchuk, A.; Hanna, S.;
Chin, E. Permission Re-Delegation: Attacks and
Defenses. 2011. USENIX Security Symposium.

[3] Davi, L.; Dmitrienko, A.; Sadeghi, A.-R.; Winandy, M.
Privilege escalation attacks on Android. 2011.
Information Security, pp.346–360.

public static String a(Context paramContext, String paramString1, String paramString2){

 List localList = h(paramContext);

 if ((localList == null) || (localList.size() <= 1))

 {

 localObject1 = paramContext.getPackageName();

 return localObject1;

 }

 long l1 = paramContext.getSharedPreferences(paramContext.getPackageName() + “.push_sync”, 1).getLong(“priority”,
0L);

 String str = paramContext.getPackageName();

 Iterator localIterator = localList.iterator();

 l2 = l1;

 localObject1 = str;

 while (localIterator.hasNext())

 {

 localObject2 = ((ResolveInfo)localIterator.next()).activityInfo.packageName;

 SharedPreferences localSharedPreferences2 = paramContext.createPackageContext((String)localObject2,
2).getSharedPreferences((String)localObject2 + paramString1, 1);

 . . .

 }

}

Code 6: This method inspects all SharedPreference fi les of the packages that can answer the MoPlus SDK actions and returns the
package name with the highest priority.

public static void a(Context paramContext, Intent paramIntent, long paramLong){

 PendingIntent localPendingIntent = PendingIntent.getBroadcast(paramContext, 0, paramIntent, 268435456);

 AlarmManager localAlarmManager = (AlarmManager)paramContext.getSystemService(“alarm”);

 localAlarmManager.cancel(localPendingIntent);

 localAlarmManager.set(3, paramLong + SystemClock.elapsedRealtime(), localPendingIntent);

}

Code 7: This method cancels previous intents matching the service, and registers a new intent to be launched after a certain delay
defi ned by the parameter passed to the method.

WILD ANDROID COLLUSIONS BLASCO ET AL.

8 VIRUS BULLETIN CONFERENCE OCTOBER 2016

[4] Wu, L.; Du, X.; Zhang, H. An effective access control
scheme for preventing permission leak in Android.
2015. International Conference on Computing,
Networking and Communications (ICNC) pp.57–61.
IEEE.

[5] Schlegel, R.; Zhang, K.; Zhou, X.-y.; Intwala, M.;
Kapadia, A.; Wang, X. Soundcomber: A stealthy and
context-aware sound trojan for smartphones. 2011.
NDSS, 11, pp.17–33.

[6] Marforio, C.; Francillon, A.; Capkun, S. Application
collusion attack on the permission-based security
model and its implications for modern smartphone
systems. 2011. https://www.ethz.ch/content/dam/ethz/
special-interest/infk/inst-infsec/system-security-group-
dam/research/publications/pub2011/724.pdf.

[7] Bugiel, S.; Davi, L.; Dmitrienko, A.; Heuser, S.;
Sadeghi, A.-R.; Shastry, B. Practical and lightweight
domain isolation on Android. 201. Proceedings of the
1st ACM workshop on Security and privacy in
smartphones and mobile devices pp.51–62.

[8] Suarez-Tangil, G.; Tapiador, J.; Peris-Lopez, P.;
Ribagorda, A. Evolution, detection and analysis of
malware for smart devices. 2014. IEEE
Communications Surveys & Tutorials, 16(2): 961–987.

[9] Jing, Y.; Ahn, G.-J.; Doupé, A.; Yi, J. Checking
Intent-based Communication in Android with Intent
Space Analysis. 2016. Proceedings of ASIA CCS 2016.
Xian: ACM.

[10] Schlegel, R.; Zhang, K.; Zhou, X.-y.; Intwala, M.
Soundcomber: A Stealthy and Context-Aware Sound
Trojan for Smartphones. 2011. NDSS, 11, pp.13–33.

[11] Marforio, C.; Ritzdorf, H.; Francillon, A.; Capkun, S.
Analysis of the communication between colluding
applications on modern smartphones. 2012.
Proceedings of the 28th Annual Computer Security
Applications Conference pp.51–60.

[12] Mariuca Asavoae, I.; Blasco, J.; Chen, T. M.; Kumara
Kalutarage, H.; Muttik, I.; Nguyen, H. N.; Roggenbach,
M.; Shaikh, S. A. Towards Automated Android App
Collusion Detection. 2016. Innovations in Mobile
Privacy and Security, 1575, pp.29–37.

[13] Shen, S. Setting the Record Straight on Moplus SDK
and the Wormhole Vulnerability. 2015.
http://blog.trendmicro.com/trendlabs-security-
intelligence/setting-the-record-straight-on-moplus-sdk-
and-the-wormhole-vulnerability/

[14] McAfee Labs (Intel Security). McAfee Labs Threats
Report June 2016. http://www.mcafee.com/us/
resources/reports/rp-quarterly-threats-may-2016.pdf.

https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/system-security-group-dam/research/publications/pub2011/724.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-may-2016.pdf

